For more information, log on to-
http://shomusbiology.weebly.com/
Download the study materials here-
http://shomusbiology.weebly.com/bio-m...
Protein biosynthesis is the process by which biological cells generate new proteins; it is balanced by the loss of cellular proteins via degradation or export. Translation, the assembly of proteins by ribosomes, is an essential part of the biosynthetic pathway, along with generation of messenger RNA (mRNA), aminoacylation of transfer RNA (tRNA), co-translational transport, and post-translational modification. Protein biosynthesis is strictly regulated at multiple steps, and error-checking mechanisms are in place.
The cistron DNA is transcribed into a variety of RNA intermediates. The last version is used as a template in synthesis of a polypeptide chain. Protein will often be synthesized directly from genes by translating mRNA. When a protein must be available on short notice or in large quantities, a protein precursor is produced. A proprotein is an inactive protein containing one or more inhibitory peptides that can be activated when the inhibitory sequence is removed by proteolysis during posttranslational modification. A preprotein is a form that contains a signal sequence (an N-terminal signal peptide) that specifies its insertion into or through membranes, i.e., targets them for secretion.[1] The signal peptide is cleaved off in the endoplasmic reticulum.[1] Preproproteins have both sequences (inhibitory and signal) still present.
In protein synthesis, a succession of tRNA molecules charged with appropriate amino acids are brought together with an mRNA molecule and matched up by base-pairing through the anti-codons of the tRNA with successive codons of the mRNA. The amino acids are then linked together to extend the growing protein chain, and the tRNAs, no longer carrying amino acids, are released. This whole complex of processes is carried out by the ribosome, formed of two main chains of RNA, called ribosomal RNA (rRNA), and more than 50 different proteins. The ribosome latches onto the end of an mRNA molecule and moves along it, capturing loaded tRNA molecules and joining together their amino acids to form a new protein chain.[2] Source of the article published in description is Wikipedia. I am sharing their material. Copyright by original content developers of Wikipedia.
Link- http://en.wikipedia.org/wiki/Main_Page PPT source: All the PowerPoint material is from Sciencegeek.net. Copyright by sciencegeek.net.
Link- http://www.sciencegeek.net/Biology/Po...
http://shomusbiology.weebly.com/
Download the study materials here-
http://shomusbiology.weebly.com/bio-m...
Protein biosynthesis is the process by which biological cells generate new proteins; it is balanced by the loss of cellular proteins via degradation or export. Translation, the assembly of proteins by ribosomes, is an essential part of the biosynthetic pathway, along with generation of messenger RNA (mRNA), aminoacylation of transfer RNA (tRNA), co-translational transport, and post-translational modification. Protein biosynthesis is strictly regulated at multiple steps, and error-checking mechanisms are in place.
The cistron DNA is transcribed into a variety of RNA intermediates. The last version is used as a template in synthesis of a polypeptide chain. Protein will often be synthesized directly from genes by translating mRNA. When a protein must be available on short notice or in large quantities, a protein precursor is produced. A proprotein is an inactive protein containing one or more inhibitory peptides that can be activated when the inhibitory sequence is removed by proteolysis during posttranslational modification. A preprotein is a form that contains a signal sequence (an N-terminal signal peptide) that specifies its insertion into or through membranes, i.e., targets them for secretion.[1] The signal peptide is cleaved off in the endoplasmic reticulum.[1] Preproproteins have both sequences (inhibitory and signal) still present.
In protein synthesis, a succession of tRNA molecules charged with appropriate amino acids are brought together with an mRNA molecule and matched up by base-pairing through the anti-codons of the tRNA with successive codons of the mRNA. The amino acids are then linked together to extend the growing protein chain, and the tRNAs, no longer carrying amino acids, are released. This whole complex of processes is carried out by the ribosome, formed of two main chains of RNA, called ribosomal RNA (rRNA), and more than 50 different proteins. The ribosome latches onto the end of an mRNA molecule and moves along it, capturing loaded tRNA molecules and joining together their amino acids to form a new protein chain.[2] Source of the article published in description is Wikipedia. I am sharing their material. Copyright by original content developers of Wikipedia.
Link- http://en.wikipedia.org/wiki/Main_Page PPT source: All the PowerPoint material is from Sciencegeek.net. Copyright by sciencegeek.net.
Link- http://www.sciencegeek.net/Biology/Po...
16. Translation (protein biosynthesis) lipids polymer | |
80 Likes | 80 Dislikes |
24,924 views views | 750K followers |
Education | Upload TimePublished on 4 Jul 2013 |
Không có nhận xét nào:
Đăng nhận xét